Tensorflow 数据读取机制详细介绍

  tensorflow 的数据读取机制对于新手而言比较难理解,而且官方文档写得也比较简陋,网上的资料也介绍得不是很透彻。为了帮助初学者有一个比较直观的认识,今天便写篇博客为大家详细地介绍下 tensorflow 的数据读取机制。

tensorflow 读取机制过程图解

  首先思考下什么是数据读?以图像数据为例,读取数据的过程可以用下图来表示:

  假设硬盘中有一个图片数据集0001.jpg,0002.jpg,0003.jpg……在进行网络训练的时候,我们只需要将它们读入到内存中,然后提供给GPU或是CPU进行计算就可以了。这听起来很容易,但事实远没有那么简单。事实上,我们必须要把数据先读入后才能进行计算,假设读入用时0.1s,计算用时0.9s,那么就意味着每过1s,GPU都会有0.1s无事可做,这就大大降低了运算的效率。

解决这个问题的法就是将读入数据和计算分别放在两个线程中,将数据读入内存的一个队列,如下图所示:

  读取线程源源不断地将文件系统中的图片读入到一个内存的队列中,而负责计算的是另一个线程,计算需要数据时,直接从内存队列中取就可以了。这样就可以解决GPU因为IO而空闲的问题!

而在tensorflow中,为了方便管理,在内存队列前又添加了一层所谓的“文件名队列”。

  为什么要添加这一层文件名队列?我们首先得了解机器学习中的一个概念:epoch。对于一个数据集来讲,运行一个epoch就是将这个数据集中的图片全部计算一遍。如一个数据集中有三张图片A.jpg、B.jpg、C.jpg,那么跑一个epoch就是指对A、B、C三张图片都计算了一遍。两个epoch就是指先对A、B、C各计算一遍,然后再全部计算一遍,也就是说每张图片都计算了两遍。

  tensorflow使用文件名队列+内存队列双队列的形式读入文件,可以很好地管理epoch。下面我们用图片的形式来说明这个机制的运行方式。如下图,还是以数据集A.jpg, B.jpg, C.jpg为例,假定我们要跑一个epoch,那么我们就在文件名队列中把A、B、C各放入一次,并在之后标注队列结束。

程序运行后,内存队列首先读入A(此时A从文件名队列中出队):

再依次读入B和C:

  此时,如果再尝试读入,系统由于检测到了“结束”,就会自动抛出一个异常(OutOfRange)。外部捕捉到这个异常后就可以结束程序了。这就是tensorflow中读取数据的基本机制。如果我们要跑2个epoch而不是1个epoch,那只要在文件名队列中将A、B、C依次放入两次再标记结束就可以了。

tensorflow读取数据机制的对应函数

  如何在tensorflow中创建上述的两个队列呢?对于文件名队列,我们使用 tf.train.string_input_producer 函数。这个函数需要传入一个文件名list,系统会自动将它转为一个文件名队列。

  此外 tf.train.string_input_producer 还有两个重要的参数,一个是 num_epochs ,它就是我们上文中提到的epoch数。另外一个就是 shuffleshuffle 是指在一个epoch内文件的顺序是否被打乱。若设置 shuffle=False ,如下图,每个epoch内,数据还是按照A、B、C的顺序进入文件名队列,这个顺序不会改变:

如果设置 shuffle=True ,那么在一个epoch内,数据的前后顺序就会被打乱,如下图所示:

  在tensorflow中,内存队列不需要我们自己建立,我们只需要使用reader对象从文件名队列中读取数据就可以了,具体实现可以参考下面的实战代码。

  除了 tf.train.string_input_producer 外,我们还要额外介绍一个函数: tf.train.start_queue_runners 。初学者会经常在代码中看到这个函数,但往往很难理解它的用处,在这里,有了上面的铺垫后,我们就可以解释这个函数的作用了。

  在我们使用 tf.train.string_input_producer 创建文件名队列后,整个系统其实还是处于“停滞状态”的,也就是说,我们文件名并没有真正被加入到队列中(如下图所示)。此时如果我们开始计算,因为内存队列中什么也没有,计算单元就会一直等待,导致整个系统被阻塞。

  而使用 tf.train.start_queue_runners 之后,才会启动填充队列的线程,这时系统就不再“停滞”。此后计算单元就可以拿到数据并进行计算,整个程序也就跑起来了,这就是函数 tf.train.start_queue_runners 的用处。

代码实现

  我们用一个具体的例子感受tensorflow中的数据读取。如图,假设我们在当前文件夹中已经有A.jpg、B.jpg、C.jpg三张图片,我们希望读取这三张图片5个epoch并且把读取的结果重新存到read文件夹中。

代码如下:

# 导入tensorflow
import tensorflow as tf

# 新建一个Session
with tf.Session() as sess:
    # 我们要读三幅图片A.jpg, B.jpg, C.jpg
    filename = ['A.jpg', 'B.jpg', 'C.jpg']
    # string_input_producer会产生一个文件名队列
    filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)
    # reader从文件名队列中读数据。对应的方法是reader.read
    reader = tf.WholeFileReader()
    key, value = reader.read(filename_queue)
    # tf.train.string_input_producer定义了一个epoch变量,要对它进行初始化
    tf.local_variables_initializer().run()
    # 使用start_queue_runners之后,才会开始填充队列
    threads = tf.train.start_queue_runners(sess=sess)
    i = 0
    while True:
        i += 1
        # 获取图片数据并保存
        image_data = sess.run(value)
        with open('read/test_%d.jpg' % i, 'wb') as f:
            f.write(image_data)

  我们这里使用 filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5) 建立了一个会跑5个epoch的文件名队列。并使用reader读取,reader每次读取一张图片并保存。

运行代码后,我们得到就可以看到read文件夹中的图片,正好是按顺序的5个epoch:

  如果我们设置 filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5) 中的 shuffle=True,那么在每个epoch内图像就会被打乱,如图所示:

总结

  这篇文章主要用图解的方式详细介绍了tensorflow读取数据的机制,最后还给出了对应的实战代码,希望能够给大家学习tensorflow带来一些实质性的帮助。如果各位小伙伴还有什么疑问,欢迎评论或私信告诉我,谢谢~


分享到:
打赏一个呗!

留下买路财!

取消

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,你说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

Powered by GJoker,分享从这里开始,精彩与您同在